Key points to learn		Key points to learn		
1 Atmosphere	Layer of gas around Earth	10	Greenhouse gases stop heat	
2. Earth's early atmosphere	Volcanos released carbon dioxide (CO_2), water vapour (H_2O) and nitrogen (N_2)	Greenhouse effect	escaping from the Earth into space. This results in Earth getting hotter	
theory	Similar to Mars and Venus		1. Carbon dioxide: released from	
3. Photosynthesis	We think it was responsible for changing early atmosphere	11. Greenhouse	 Methane: released from swamps, rice fields 	
	Removes carbon dioxide and makes oxygen	gases	 Water vapour (eg steam and clouds) 	
	Carbon + Water → Oxygen + Glucose Dioxide	12. Risks of	 Rising sea levels as a result of melting ice caps Extractor constructs 	
4. Fossil fuels	Coal, crude oil and natural gas. Formed from fossilised remains of plants and animals	giobal climate change	 Extreme weather eg storms Changes to temperature and rainfall patterns Ecosystems under threat 	
5. Carbon 'locked into' rock	Carbon stored in shells and skeletons turned into limestone	13 Issues with	 It will cost money There is still disagreement 	
	Carbon in living things was also locked away as fossil fuels	greenhouse gas emission	 There is still disagreement that it is a problem It is difficult to implement 	
6. Ammonia and methane	Removed from atmosphere by reactions with oxygen	14. Carbon footprint	The CO ₂ released as a result of a persons activities over a year	
7. Earth's atmosphere today	Nitrogen: 78% Oxygen: 21% Argon: 0.9% Carbon dioxide: 0.04% Trace amounts of other gases	15. Ideas for reducing our carbon footprint	 Burn less fossil fuels Carbon capture Reduce demand for beef Planting more trees 	
8. Ozone	Nothing to do with Global warming or the Greenhouse Effect. A layer	16. Carbon capture	Pumping and storing CO ₂ underground in rocks	
layer	of O_3 protecting us from UV rays	17. Nitrogen oxide	Released by burning fossil fuels. Causes acid rain and breathing issues	
9. Incomplete combustion	If not enough oxygen is available then poisonous carbon monoxide and soot are produced	18 . Sulfur dioxide	Released by burning fossil fuels. Causes acid rain	

Trilogy C11: The Earth's atmosphere Collins revision guide: Chemistry of the atmosphere **Knowledge Organiser** Big picture (Chemistry Paper 2) Rates, equilibrium and Analysis and the organic chemistry Earth's resources Rates and Chemical equilibrium analysis Crude oil and The Earth's fuels atmosphere

Background

The Earth's resources

The bubble of gas around our planet that we call Earth's atmosphere does far more than provide the oxygen we need for respiration. In Europe, winters are almost two weeks shorter than they were 40 years ago. Extreme weather seems more common than ever. Cases of asthma and respiratory difficulties increase year-on-year and we are always looking at ways of making our air cleaner .

Year 9 Chemistry topic 3 learning journey.

Vocabulary:

Combustion, atmosphere, carbon footprint, global warming, acid rain, global dimming, photosynthesis, sedimentary rocks, crude oil, radiation, greenhouse, methane, carbon dioxide, carbon monoxide, sulfur dioxide, particulates (soot/ash), ice caps, deforestation, Carbon neutral, carbon off-setting, carbon capture and storage, oxidation

Vocabulary:

Reactivity series, displacement, reduction, electrolysis, salt,

electrolyte, electrode, ion, alloy

Metal	Heated with Oxygen	With Water	With Acid	
Potassium		Produces hydrogen	Vielent reaction	
Sodium		with cold water	VIOlent reaction	
Calcium	Burst into flames and oxide			
Magnesium	forms very vigorously	Produces hydrogen	Rate of reaction decreases down the table	
Aluminium				
Zinc		with steam		
Iron	Glows and oxide forms slowly			
Lead	Oxide forms without glowing		Very slow reaction	
Copper	or bursting into flames	No reaction with		
Silver	No reaction	water or steam	No reaction	
Gold	ino reaction			

Alloy	Ingredients and Composition	Use	
Steel	Iron 99% Carbon 1%	Rail and wheels, , engine, ship, vehicles, crane, weapons, knives, scissors, watch spring, magnet, agriculture tools	
Rust free steel (Stainless Steel)	Iron 74% Chromium 18% Nickel 8%	Knives, fork, kitchen sink, containers of chemical industries, operation tools	
Brass	Copper 65% Zinc 35%	Ornaments, ball-bearing, electric switch, door knob, utensils	
Bronze	Copper 90% Tin 10%	Melting machineries, plates, glasses	
Duralumín	Aluminium 95% Copper 4% Magnesium, Manganese and iron 1%	Body or airplane, bicycle parts	

Displacement reactions and metal extraction

most reactive	К
	Na
	Ca
	Mç
	Al
	С
	Zn
	Fe
	Sn
	Pb
	н
	Cu
	Ag
	Au
least reactive	Pt
	most reactive

B and D are Anions (Negative lons) Double Displacement Reaction

HT: OILRIG Oxidation Is Loss of electrons Reduction Is Gain of electrons

Metal + Oxygen \rightarrow Metal Oxide

<mark>Metal + Water →</mark> Metal Hydroxide + hydrogen

Metal + acid \rightarrow Metal salt + Hydrogen

Electrolysis

Year 9 Chemistry topic 2 learning journey.

More reactive than carbon Extracted by electrolysis

Less reactive than carbon Extracted by reduction

Very unreactive Found in their native state What I already know from year 7 and 8:

Elements can be grouped as metals or nonmetals due to their properties.

Metals can be put in order of reactivity from practical observations.

Metals are extracted from the Earth by quarrying and then heating with carbon. This has impact on our environment.

 Negative non-metal ion

 Positive metal ion

Metals react with oxygen to form metal oxides in an oxidation reaction. Some metals react with water or acids and can be put in an order of reactivity using observations. Simple equations can be used to represent these reactions. When metals react with acids a gas is released this is hydrogen and can be tested for using a lit splint.

A salt is also made which comes from the metal replacing the hydrogen in the acid.

This can be represented by word equations.

Metals less reactive than carbon can be extracted from their ores by heating with carbon. The metal losses oxygen so is reduced and the carbon gains oxygen so is oxidised. Metals more reactive than carbon are extracted by electrolysis, this is where electricity is paced through a molten electrolyte containing positive metal ions and negative nonmetal ions. Because they are charged the ions will separate and move to the opposite electrode. Alloys are mixtures containing metals that improve properties such as strength or corrosion resistance. Know about the alloys; Bronze, brass, gold, aluminium, High carbon steel, low carbon steel, stainless steel.

Future learning Ions and bonding. Detailed electrolysis. Reactions of acids and neutralisation.

Saving the Earth's resources by recycling and using low grade ores.

Vocabulary:

Beactivity series, displacement, reduction, electrolysis, salt,

electrolyte, electrode, ion, alloy

Pure Metal

Alloys

- All atoms are the same size and shape.
- The layers slide easily this is why metals are <u>malleable</u> (can be hammered into shape)

Alley

- The atoms different sizes
- This makes it harder for the layers to slide
- Alloys are stronger than pure metals

