Unit 12 Pythagoras and Trigonometry:

Objective	Sparx Task
Use Pythagoras' theorem in 2D (including surds)	U385
Apply Pythagoras in different contexts such a	
coordinate geometry and with a range of shapes and	
units	
Recall the trigonometric ratios for Sine, Cosine and	U605
Tangent	
Use trig to find a missing length in a right angled	U283
triangle	
Use trig to find an angle in a right angled triangle	U545
(includes angles of elevation/depression)	
Solve problems using trigonometry/Pythagoras that	
incorporate other aspects of the syllabus such as area	
and perimeter.	
Know the exact trig angles for 0,30,45, 60 and 90 for	U627
all three trig ratios (excluding tan90)	

Unit 15 Elevations, Constructions, Loci and Bearings:

Objective	Sparx Task
Draw front/side elevations, plan views and understand the 3D solid that they have come from	U743
Understand the properties of 3D solids including, faces, edges, vertices and be able to sketch/count planes of symmetry	U719
Construct three different types of triangles (SAS, ASA and SSS)	U187
Construct perpendicular bisectors and angle bisectors	U245
	U979
Understand the term locus (loci) and be able to sketch simple loci	U820
Construct loci a fixed distance from a point or a line	U820
Construct loci equidistant between two points or two lines	U820
Show how the above loci can be used to define regions 'nearer to or 'greater than'	U820

Accurately draw and measure bearings that may incorporate a scale	U525	
Use angle rules to calculate bearings	U164	
Solve loci problems that may involve bearings		